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Abstract

Real number genetic algorithms (GA) have been applied for tuning

fuzzy membership functions of three controller applications. The

first application is our "Fuzzy Pong" demonstration, a controller that

controls a very responsive system. The performance of the

automatically tuned membership functions exceeded that of manually

tuned membership functions both when the algorithm started with

randomly generated functions and with the best manually-tuned

functions. The second GA tunes input membership functions to

achieve a specified control surface. The third application is a

practical one, a motor controller for a printed circuit manufacturing

system. The GA alters the positions and overlaps of the membership

functions to accomplish the tuning. This paper discusses the

applications, the real number GA approach, the fitness function and

population parameters, and the performance improvements achieved.

Directions for further research in tuning input and output

membership functions and in tuning fuzzy rules are described.

Introduction

A significant task in building fuzzy control systems is tuning

the membership functions (MBFs) to improve or optimize the

performance of the controller. The tuning task has been

accomplished with fuzzy systems 1, neural networks 2, and genetic

algorithms 3 (GAs). In this paper, we describe the use of real number

genetic algorithms 4 to successfully tune membership functions for

several fuzzy control systems. A significant feature of this work is

that the input MBFs are tuned whereas many previous efforts have

concentrated on tuning the output MBFs. Because both input and
output membership functions are required to define the control

surface for the fuzzy controller, this offers an added degree of
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flexibility to the tuning process. Whether such flexibility is, in fact,

beneficial to fuzzy controller tuning is yet to be determined.

We first describe some aspects of real number genetic

algorithms because that representation of genetic algorithms is less

familiar than others. Next, we describe an application of matching a

predefined control surface by tuning membership functions for the

inputs. Third, we discuss the fuzzy pong application, a controller for

an air flow driven by a fan and balancing a ping pong ball at a set

position in a plastic tube. Fourth, we briefly discuss results for

applying the technique to an AC servomotor control system. We then
conclude with remarks about future directions.

Real Number Genetic Algorithms

Many genetic algorithm applications and theorems are based

on bit string representations in which the parameters to be optimized

are encoded in binary numbers, concatenated, and treated for GA

manipulations as one continuous bit string. In tuning fuzzy

membership functions, we found it more useful to keep the real

number representation for the parameters of the MBFs and to

manipulate the numbers using crossover and mutation techniques

suitable to the real number representation 4.

Fig. 1 shows the representation of a collection of parameters

as a list of real numbers. For the applications discussed below, we

used five symmetric triangular membership functions with two

parameters each, namely, the upper and lower ends of the support,

for each universe of discourse. The fact that we need to represent

pairs of ordered numbers favors the real number representation. We

used twenty individuals in our populations, for convenience.

Because real number GAs are not extensively used, a standard

set of operators is not yet defined. Fig. 2 illustrates our genetic

algorithm operators for real number GAs: merge, crossover, mutate,

and creep. Merge averages the parameters of two individuals to form

the offspring. Crossover exchanges the real numbers between two fit

individuals, pairwise. For the problem with two MBFs, the net effect

is to replace left or right extents of the MBFs between fit individuals

to concentrate the best combinations within a single individual.

Presumably, the other individual would lose in the fitness evaluation

during the next cycle. Mutate begins by selecting which fuzzy
variable is to be selected on a random draw. For our case of two

fuzzy input variables, the probability was 50-50 of selecting either

one of the MBFs. Having selected the MBE we perturb its
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parameters by randomly selected magnitudes. Creep is an operation

in which all parameters of an individual are randomly perturbed.

Creep is a hybridizing operation well-suited for search in the local
area of an individual if the random variations are limited to some

maximum. Our process used 5 individuals mated with the most fit of

a generation by crossover, 5 most fit individuals mutated, 5 merged

individuals from a pairwise competition, and 5 new individuals

selected by random draw as the basis for choosing a new generation.

A variant of the creep operator was used in later generations.

The input membership functions are symmetrical and

described by an upper and lower end of the support. The peak of the

triangular shape is midway between these extremes and has

membership value of one. The controller we used was a two-input

one output generic controller that could be customized to the

application. The simplest interpretation is error and error_rate for

the two inputs and control for the output. This interpretation varies

from application to application as in the control surface generator

described in the next section. With five MBFs for each fuzzy

variable, the input MBFs are characterized by 20 numbers, the size

of an individual in our population. Fig. 1 illustrates the

correspondence between the MBF support parameters and the GA
individuals.

Matching a Control Surface

The simplest of the tuning applications we performed was the

tuning of membership functions to match a prespecified control

surface. Although the control surface for a controller is

generally not known a priori, in those cases where it is, GA tuning

may be useful. One example of such a case might be the operation of

a plant by an operator in which the control commanded manually is
recorded with the plant sensors. Such relations would define a partial

control surface that might be encoded in a fuzzy controller.

To illustrate the capability to tune to a given control surface,

we tuned the MBFs of the inputs to a two-input(x,y), one-output(z)

controller to match a control surface x 2 + y2 = 10z. The fitness

criterion was the sum of squares of differences between the predicted

output for the controller and (x 2 + y2)/10. The parameters of the

GAs were adjusted to minimize the mean square error between these

quantities over the control surface as measured at 121 points chosen

in a square pattern across the center of the x-y plane.
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Fig. 3 illustrates the performance for several randomly chosen

starting populations. The mean square error converges rapidly with

generation number. The best fits we have observed converge to

approximately 15 on the same fitness scale. This suggests that the

effects of local minima are significant and that knowledge of good

initial membership functions will greatly assist convergence to
optimal controllers.

The Fuzzy Pong Controller

The fuzzy pong is a controlled plant consisting of a ping-pong

ball suspended on a column of air provided by a small fan whose

voltage is controlled by the fuzzy controller or a proportional-

integral-derivative (PID) controller. (The choice is made by which

code is loaded into the microcontroller memory.) The ball's location

in the plastic tube is determined using an ultrasonic acoustic range
sensor located at the bottom of the tube. The servocontroller

function is provided by a Hitachi H8/325 microprocessor board that
drives a conventional transistor amplifier that serves as the DC

voltage control for the motor voltage. The set point for control is

provided to the H8 by an external personal computer (PC) that also

is used as a monitor and data display device. There are two set points

provided by the PC: high and low set points. When the ping pong
ball stabilizes its position within user defined limits about either set

point for a time preset by the user, the PC commands traversal to the

other set point. The fuzzy controller commands the fan voltage based

on the error = (set point - ball location) and the rate of change of

error = (error(t) - error(t-l)), where t is the current time in units of

the sample interval. The ability of the fuzzy controller to provide

more precise control than the PID had been previously established

through manual tuning to achieve smallest time transitions with
minimal overshoot.

The GA tuning used a fitness function that measures the

number of successful transitions, up to four, that an individual can

accomplish, the rise time achieved in those transitions, and the

overshoot that the transitions possess. If an individual cannot achieve

success in stabilizing the ball within a predetermined time, the

evaluation of the fitness is terminated. The achieving of the set point
within a time limit allows the evaluation of other factors and offers a

chance to try again up to four attempts. The fitness is evaluated using

the hardware and is thus not deterministic because of the sensitivity

of the pong to ball spin, initial position, air temperature, etc. The
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fitness over a sequence of populations thus may not monotonically

decrease, even if the best individual from the preceding generation is

kept to assure monotonicity.

Fig. 4 illustrates the fitness of the best individual in a

generation as a function of generation. There is some improvement

within a level established by success in finding the set point. The

fitness is clearly dominated by the success in achieving the set point.

The loss of a best individual also clearly limits system performance

considerably. A strategy for handling this contingency such as

requiring a number of generations before a best individual can be

omitted might be useful. Development of an improved fitness

criterion that places less emphasis on the number of sequential

successes - perhaps running a fixed number of trials for each
individual - would allow better discrimination of the transition

characteristics. Achieving the commanded set point would need to

continue to play an important role, however.

Motor Controller Tuning

We conducted experiments on tuning a fuzzy controller for an

AC servomotor. The controller has been previously described 5. It is

a fuzzy PD controller capable of either control of the angular rate or

the angular position. The controller exhibits "deadbeat"

performance 6 - rapid response to unit step input without overshoot -

that is faster than critically damped PID control.

This is an application in which tuning the input MBFs is

particularly appropriate because the gains on the proportional and

velocity controls are determined by MBF placement. The overall

control gain achievable by tuning output MBFs alone does not

provide the same ability to trade off between error and error rate

that the input MBF tuning provides.

The GA tuning was able to tune a controller from a random

starting population to a controller with performance equal to a

laboriously tuned manual case within 5 generations. In only one case

did a manually tuned controller exceed the performance of the GA
tuned controllers.

Further Research

There are extensions to the techniques described here that are

needed to fully evaluate the utility of this technique to tuning in

general. First, the restriction of the population to twenty individuals
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needs to be relaxed. Second, the operators need to be chosen
randomly with parameters to determine how often the operators
should occur in the random choice, similar to the practice in bit
string based GAs. Third, in cases where the best individual from a
previous generation may not evaluate to the same fitness value, the
"fencing" of the individual to prevent loss of his data from the pool

may be useful 7. Fourth, the usefulness of using three (or more)

parameters to describe a MBF should be explored. This would allow
asymmetric MBFs. Such flexibility would be useful in permitting
variable gain systems in which the placement of the center of

adjacent MBFs determines the gain and the extent of the MBF is
determined by the location of the center of the closest MBF to one of
these. The effect of limiting the extent to half a support is to make
the gain zero over that interval. Fifth, addition of search techniques
that would allow local optimization of fitness before comparison
could be useful. In a real number space, such techniques, subject to
restrictions that will be applied to the resulting individuals (e.g., that
the membership function's center must lie between the two ends of
the support), should permit more rapid convergence of the GA
search.

Summary
We have shown the applicability of real number genetic

algorithms to the problem of automated tuning of membership
functions for fuzzy controllers. The application tunes input
membership functions which is a matching of control regions to the
controller rather than the adjustment of gain of the controller. In a
practical system, retention of the best individual may not assure
monotonic convergence due to noise in the fitness function
evaluation.

The GA search is most effective for tuning the controller in
circumstances such as simulation when the failure of a system is

inconsequential. For applications in which the stability of control
must be maintained, such as automatic optimization of performance
of an autonomous system, the applicability of a global search
mechanism is questionable if the evaluation of fitness depends on
controlling the device.
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FUZZY GENETIC ALGORITHM MERGE
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SMALL CHANGES ON MINIMUM SURFACE BRINGS CLOSER TO MAXIMUM

(b)

Fig. 2 Real number genetic operators defined for this tuning process
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FUZZY GENETIC ALGORITHM MUTATE
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Fig. 2 (cont'd) Real number genetic operators
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